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Abstract This work is concerned with the problem of the transient behaviours of the
axisymmetric thermocapillary laminar flow occurring inside a half zone subjected to a variable
thermal boundary condition during a heating process. The molten liquid with its deformable free
surface is considered incompressible with constant physical properties except for its density in
buoyancy forces where Boussinesq's approximation has been applied. The system of governing
equations has been successfully solved by using the modified-SIMPLE method, while the
instantaneous position of the free surface was determined by employing a special procedure.
Numerical simulations have been carried out for both NaNO3 and Silicon float zones operating
under 1-g and �-g conditions. The transient behaviours as well as the influence of the Marangoni
number and the aspect ratio have been investigated.

Nomenclature
A = aspect ratio, A = R0 / H
Bd = dynamic Bond number,

Bd = �g�H2 / | @ � / @ T |
Bs = static Bond number, Bs = �gH2 / �
Ca = capillary number, Ca = |@ � /@T |

� T / �
Cp = specific heat of the fluid
H = height of the half zone
Ma = Marangoni number,

Ma = | @�=@T | � T H / ��
P = dimensionless pressure
Pr = Prandtl number, Pr = Cp � / �

R, Z = dimensionless radial and axial
coordinates

Reth = thermocapillary Reynolds number,
Reth = | @ �=@ T | � T H / �v
= Ma / Pr

Ro = radius of the zone
t, T = dimensional and dimensionless

temperature
VR = dimensionless radial velocity

component
VZ = dimensionless axial velocity

component
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The zone melting technique, as invented by Pfann (1966), has become a very
popular mean today to produce high quality crystals, mainly because of its
minimum risk of contamination. Experimental observations have shown that
even under the condition of strongly reduced gravity, the presence of the
thermocapillary flow ± which results from a temperature gradient on the free
surface ± perturbs considerably the internal thermal field and thus, in turn,
may affect greatly the crystallization process (Schwabe et al., 1978, 1979a, 1982,
1989, 1990; Schwabe and Scharmann, 1979, 1983, 1984; Preisser et al., 1983;
Chun, 1980; Chun and Wuest, 1979, 1981, 1982, 1983). A comprehensive review
of previous works in the domain may be found in Schwabe (1988) and Wilcox
(1991).

The effects caused by the thermocapillary flow on the thermal field as well
as the flow structure inside a float zone have also been studied numerically.
Since the pioneer works by Chang and Wilcox (1975, 1976), there exist a
considerably large amount of studies dealing with the hydrodynamic and
thermal aspects of a float zone (see in particular, Kozhoukharova and Slavchev,
1986; Slavchev and Kojukharova, 1984; Saghir and Rosenblat, 1990; Saghir,
1998; Saghir et al., 1992; Duranceau and Brown, 1986; Lan and Kou, 1990; Lan
et al., 1990; Kobayashi, 1988; Nguyen et al., 1995a). These studies, although
they have given considerable insights into the hydrodynamic and thermal
behaviours of float zones operating under various gravity conditions, were
concerned only with the steady-state regime. Since the dynamical
crystallization process (formation and growth of dendritic structure and
dislocations, . . .) depends strongly on the temporal evolution of the
temperature field within the float zone (see for example, Takao (1985) and
Jordan et al. (1980)), the knowledge of the transient behaviours of the latter
during the heating duration are, therefore, of crucial importance. Unfortunately,
there exist only very few studies dealing with this aspect. With regard to the
cylindrical float zone which is under consideration here, one should mention
Saghir et al. (1992) who have successfully studied numerically the transient
problem of a Silicon oil half zone on Earth condition where prescribed
temperatures of both disks change with time. Their results of the internal flow
and thermal field, as obtained for some specific `̀ pseudo-steady-states'' (i.e. with
constant �T between the disks), seem to agree very well with their own
experimental data. Rupp et al. (1989) and Kazarinoff and Wilkowski (1990)
have considered the transient behaviour of a GaAs half-zone and a Silicon full-
zone, respectively. However their works were concerned with the oscillatory
flow structure under critical heating condition. In a recent work, Nguyen et al.

� = thermal conductivity of the fluid
� = the thermal diffusivity,
� = thermal expansion coefficient
� = dynamic viscosity,
� = kinematic viscosity

� = the density of the fluid
� = surface tension of the liquid-vapor

interface
� = dimensional time
�* = dimensionless time
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(1995b) have studied numerically the transient hydrodynamic and thermal
behaviour of a float zone operating under 0-g condition. The structure of the
internal flow field as well as the influence of key parameters have been
thoroughly studied. In particular, the flow structure at very high Marangoni
number has also been established. Unfortunately, the assumption of a perfectly
cylindrical free surface, although it appears to reflect quite well the 0-g
condition, has imposed a severe restriction to any further study in 1-g
condition. In the present paper, a more realistic physical model, which takes
into account the deformability of the free surface, has been proposed.
Simulations were performed under unsteady regime where the flow and
thermal fields, subjected to a realistic heating process, develop from the known
initial state. The time-development of zones operating under 1-g and �-g (i.e.
10±4g) with NaNO3 and Silicon will be presented and discussed.

Mathematical formulation
a) Governing equations
We consider a cylindrical half-zone of a molten liquid which is held, under
surface tension effect, between a pair of coaxial, parallel disks of radius R0 and
separated from each other by the distance H (Figure 1a). The disks are
stationary and isothermal at uniform temperatures t1 = f (� ) and t2 = tM , where
f (� ) is an a priori known function of time specifying the heating process and tM

is the melting temperature of the material considered. For a proper
mathematical formulation of the problem, the fluid is assumed to be
incompressible with constant properties evaluated at tM, except for the density
appearing in the buoyancy forces where the Boussinesq's approximation
prevails. The flow and thermal field are both axisymmetric. The compression
work as well as the viscous dissipation in the energy equation are considered to
be negligible. Under these conditions, the dimensionless governing equations
written in the cylindrical coordinates system are as follows:

@VR

@R
� @VZ

@Z
� VR

R
� 0 �1�

DVR

D�� � ÿ
@P

@R
� 1

Reth
�r2VR ÿ VR

R2
� �2�

DVZ

D��
� ÿ @P

@Z
� 1

Reth
r2VZ ÿ Bd

Reth
T �3�

DT

D��
� 1

Ma
r2T �4�

where
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D��
� @

@��
� VR

@

@R
� VZ

@

@Z
�5�

r2 � @2

@R2
� 1 @

R @R
� @2

@Z2
�6�

In order to obtain the above equations, the following quantities
H; j@ �= @ T j � T=��; �H �= j @ �=@ T j � T�; ��j@�=@Tj�T=��2, and
�T = tt1 ÿ t2 have been adopted as the reference length, velocity, time,
pressure and temperature difference respectively (tt1 is the disk no. 1
temperature corresponding to each of the step cases considered ± see Figure 2).
A dimensionless variable is obtained by normalizing the quantity considered

Figure 1.
(a) Geometry of the
problem studied, and (b)
the grid used for
computation.
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with respect to the corresponding reference quantity. The dimensionless

temperature is defined as:

T � �t ÿ t2�
�T

�7�

b) Boundary and initial conditions

In order to completely define the problem under consideration, one must

introduce the following hydrodynamic and thermal boundary conditions

(Equations 8-11) as well as the initial conditions (Equation 12):

i: at Z � 0 : VR � VZ � 0 ; T � 0 �8�

Figure 2.
Comparison with

experimental data for:
(a) NaNO3, steady-state
case and (b) Silicone oil

float zones, unsteady
case.
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ii: at Z � 1 : VR � VZ � 0 ; T � f ���� �9�

iii: at R � 0 : VR � 0 ;
@VZ

@R
� @T

@R
� 0 �10�

iv: at R � R0

H
� A : VR ÿ @F

@Z
VZ � 0 �11a�

2
@F

@Z

@VR

@R
ÿ @VZ

@R

� �
� @VZ

@R
� @VR

@Z
� ÿ @F

@Z

@T

@R
� @T

@Z

� �
�11b�

CaRethP ÿ BsZ � 1

F
ÿ @2F

@Z 2
�11c�

@T

@R
ÿ @F

@Z

@T

@Z
� 0 �11d�

where F = F(Z) is the local radius of the deformed surface.

�: at �� � 0 : VR � VZ � 0 ; T � 0 �12�

Equations (8, 9) express the non-slip and non-penetration conditions usually
encountered on solid surfaces. On the disk no. 2, the fluid temperature is
constant and identical to tM; while the disk no. 1 temperature is variable with
time according to Figure 2. Equation (10) represents the symmetry conditions
for both the velocity and temperature fields with respect to the centerline. The
equations 11a, b, c and d specify the boundary conditions on the free surface.
Thus, we assume zero mass flux across that surface (Equation 11a) as well as
the equilibrium condition of tangential and normal stresses (Equations 11b and
11c). Also, the free surface is considered as thermally adiabatic with respect to
the surrounding environment (Equation 11d). This condition appears to be
quite appropriate to approximate the real operating conditions (see for
example, Preisser et al., 1983). Note that the equations 11(a-d) have been
obtained based on the assumptions Ca <<1 and (@F / @Z)2 <<1. The former
holds true for the cases studied here where the maximum value of Ca is about
0.009; while the latter is valid only for weakly deformed free surface. These
conditions have been thoroughly verified by a complete study of order of
different terms in Equations 11b,c (Bazzi, 1999). It is interesting to mention here
that the assumption (@F / @Z)2 <<1 has also been used by many researchers,
see for example Lai (1984) and Duranceau and Brown (1986), in similar studies
on float zones. The complementary details regarding the mathematical
obtention of the equations 11 (a-d) are given in the Appendix.
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With regard to the initial conditions, Equation (12) specifies the rest state
where the fluid temperature is uniform and equal to the melting temperature at
the beginning of the heating process. (i.e. at � = �* = 0).

We finally note that, from the governing equations (1-4) and their
boundary and initial conditions (8-12), the problem under study may be
characterized by a set of seven dimensionless parameters, namely the aspect
ratio A, the thermocapillary Reynolds number Reth, the Prandtl number Pr,
Marangoni number Ma, the dynamic Bond number Bd, the static Bond
number Bs and the capillary number Ca. Their definition is given in the
Nomenclature.

c) Boundary conditions for the function F(Z)
The instantaneous position of the free surface is obtained by solving the
equation (11c) subject to the following boundary conditions:

i: at Z � 0 :
@F

@Z
� ÿ tan  �13a�

ii: at Z � 1 :
@F

@Z
� tan  �13b�

iii: F�0� � F�1� � A ; and �13c�

iv:

Z 1

0

�F�Z��2 dZ � A2 �13d�

The equations 13(a-c) simply express the conditions of adherence of the
liquid zone on both end disks ( represents in fact the contact angle); while
the equation (13d) stipulates that the volume of the liquid zone is constant
and equal to the corresponding volume of a non-deformed cylindrical liquid
zone.

Numerical method
The system of governing equations (1-4), subject to the boundary and initial
conditions (8-12), constitutes a highly non-linear and coupled system. They
must be solved appropriately in order to determine the flow structure and the
thermal field as well as their time-evolution. It should be noted that the position
of the free surface is unknown a priori and must be computed as part of the
solution. In the present study, the modified-SIMPLE method incorporated
within the computer code named Micro-COMPACT has been adopted for the
task demanded. Details regarding this method have been extensively
documented in Patankar (1980, 1996).
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a) Determination of the position of the free surface
The instantaneous (i.e. at every time-step) position of the zone free surface must
be appropriately determined by solving the equation (11c) expressing the
normal-stress balance which is subjected to the boundary conditions (13a-d).
The following procedure has been adopted in this study:

(1) first, the static shape of the free surface, i.e. the one corresponding to the
isothermal liquid zone Reth = 0, is determined by solving the equation
(A.21) subject to the same boundary conditions (13a-d) by employing a
standard Runge-Kutta (order four) algorithm ± see Burden et al. (1981).
The shape of the free surface obtained is then used as initial condition in
the next step.

(2) Since we wish to calculate the position of the free surface at every time-
step, a special procedure has been proposed and incorporated within the
Micro-COMPACT code. This procedure consists of considering the
function F(Z) ± a one-dimensional variable ± as a dependent variable.
The equation (11c) can be then cast into a generalized form which is
treatable by the code. Some special provisions and modifications were
implemented to take into account the one-dimensional nature of F(Z).
The following steps resume the procedure:

. starting with the static shape obtained from the previous step,

. solve the discretized equation of the equation (11c) by using a
modified-SIMPLE algorithm,

. correct the value of the function F(Z) according to the condition (13d),

. continue the calculation until convergence i.e. the condition (13d) is
fully satisfied within an acceptable error.

Note that the above steps must be performed at every time-step prior to
the calculation of the flow and the thermal field. The complete details
regarding the procedure of the determination of the free surface may be
found in Bazzi (1999).

b) Treatment of the free surface / the calculation procedure
The presence of the free surface requires a special attention here, particularly
for a `̀ regular-fixed-grid'' method as the one used in this study. A successful
special procedure has been proposed. According to this procedure, the
calculation domain which is extended beyond the free surface, has been split
into two different zones: the fluid zone and the inactive zone (Figure 1b). In the
fluid zone, the resolution of the governing equations proceeds following the
modified-SIMPLE algorithm, and this, employing appropriate fluid properties.
In the inactive zone, we have used the `̀ very large-source'' approach, as
proposed by Patankar (1980, 1996), in order to be able to impose the desired
radial velocity (Equation 11a), the temperature gradient (Equation 11d), and the
axial velocity gradients (Equation 11b) on the free surface. The instantaneous
position of that free surface is determined by appropriately solving the
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Equation (11c) expressing the normal stresses equilibrium, assuming the static
shape i.e. the one corresponding to Equation (11c) with however Ca Re P = 0, at
�* = 0. The calculation procedure for every time step may be summarized as
follows:

. compute the position of the free surface by solving Equation (11c)
subject to the appropriate boundary conditions according to the
procedure detailed in `̀ (a)'';

. assign appropriate values for properties and coefficients to `̀ fluid'' and
`̀ inactive'' volumes;

. solve the system of discretized equations of Equations (1-4) following
the modified-SIMPLE method, to obtain the new velocities and
temperature fields;

. correct the axial velocity and the temperature along the free surface, by
using the discretized form of the Equations (11b) and (11d). Note that the
discretized equations have been obtained by employing the standard
central-differencing technique.

c) Choice of the grid
The choice of the grid is particularly crucial due to the presence of the curved
free surface where the calculation of the temperature and velocity gradients
must be as precise as possible. Since a fixed grid is used and the free surface
has to be approximated by a set of interconnected straight segments, the grid
should then be very fine in the region near that free surface. It should be noted
that the grid was constructed based on the knowledge of the position of the free
surface as obtained in the static case. Several non-uniform grids were
thoroughly tested and compared, based on the flow and thermal structure and,
in particular, on the temperature and axial velocity profiles on the free surface.
The non-uniform 42 � 50 grid (42 and 50 nodes, respectively, along the axial
and radial directions) has been adopted for the task demanded. The grid offers
highly packed grid points along both disks and, especially, along the free
surface where radial increment �R has been drastically reduced to 0.005
(Figure 1b). The grid requires a reasonable amount of efforts in term of the
numerical computation and offers a quite acceptable accuracy of the results.
Thus, the results on the velocity and temperature as given by the 42� 50, 48�
44 and 52 � 40 non-uniform grids exhibit no significant differences (see Bazzi,
1999).

d) Choice of �� and convergence criteria
For all the cases considered in this study, the time step �� been fixed to 1 S for
low Marangoni numbers, while for Ma > 7,500, �� has been reduced to 1 / 8 S.
These values were found to be quite appropriate for the fluids considered,
NaNO3 and Silicon, and the heating-up schemes adopted.

As convergence criteria, we mainly used the residual mass resulting from
the integration of the continuity equation (Equation 1) over the finite control
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volumes. For every time step, the converged solutions which required, in the
average, from 20 to 30 `̀ inner'' iterations (the `̀ inner'' iterations refer to the
iterations performed on the set of the discretized equations within one single
time-step), were usually obtained with a very low value of this residual mass.
The maximum residual mass has not exceeded, in any case, 0.001 per cent. The
relaxation factors were fixed to 0.4 for velocity components and 0.6 for
temperature; no numerical instabilities or convergence problems were
observed, so far, during all of the simulations performed.

e) Validation of the mathematical model
The computer code has been thoroughly validated by comparing numerical
results as obtained for a NaNO3 half-zone under steady-state condition to the
corresponding experimental measures and observations by Preisser et al.
(1983). Figure 3a shows such a comparison of the fluid circulation on the free
surface. The agreement can be qualified as quite acceptable, in conjunction
with the uncertainty that may be expected in the determination of the local
velocity on the free surface by mean of the optical-particles-tracing technique.
A good concordance has also been found between numerical results and

Figure 3.
Time-evolution of the
heated disk temperature
for: (a) NaNO3 and (b) Si.
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experimental observations by Preisser et al. (1983) regarding the flow structure
and the thermal field obtained for the case Ma = 4,800 (see Bazzi, 1999). In the
second serie of validation tests, the computer code has been used to study the
transient behaviours of a Silicon oil half-zone under 1-g condition where the
disks temperatures are function of time following the same trends as
experimentally imposed by Saghir et al. (1992). A good agreement has been
found with data from Saghir et al. (1992) regarding the structure of the flow and
thermal fields for several `̀ pseudo-steady-states'' (i.e. corresponding to a
constant �T between disks). Figure 3b shows a comparison between our
results and the corresponding experimental data and numerical results by
Saghir et al. (1992) as obtained for a typical case (Ma = 617.5, Reth = 3.14, Pr =
196.5, Bs = 7.17, and Bd = 2.66). Compete details regarding the choice of the
grid and the validation tests may be found in Bazzi (1999).

Results and discussion
After the mathematical model as well as the chosen numerical method have
been satisfactorily validated, the computer code has been used to study the
transient behaviour of the hydrodynamic and thermal fields, with emphasis on
the structure of the flow at high Marangoni number. Results will be presented
for two different fluids, namely NaNO3 (Pr = 8.9) and Silicon (Pr = 0.016) for
both 1-g and �-g conditions. Note that the physical properties of the molten
liquid NaNO3 and Silicon have been taken from Preisser et al. (1983) and Saghir
(1987).

a) Time-evolution of the hydrodynamic and thermal fields for NaNO3 float
zones
Figure 2a shows the transient evolution of the hot disk (i.e. disk no. 1)
temperature as imposed for the simulations performed on NaNO3. Note that the
slope dt1 / d� was fixed to 5�C/ minute, value which appears to be reasonable
according to Schwabe and Sharmann (1983). Figures 4 and 5 show respectively,
the time-evolution of the axial velocity and temperature profiles along the free
surface for the typical cases (Ma = 5,000, Reth = 562, Ca = 0.0048) and (Ma =
10,000, Reth = 1124, Ca = 0.0096). The aspect ratio A has been fixed to 0.732,
and the static and dynamic Bond number were, respectively, 2.66 and 2.16
under 1-g condition. Note that these values of the governing parameters
correspond to a zone with dimensions R0 = 3mm and H = 4.1mm.

It is observed that, in general, the axial velocity and temperature gradients
are much more pronounced in the vicinity of the disks while over a relatively
large area of the central region on the free surface, the fluid temperature and
circulation are almost uniform. We also notice the similar shape of axial
velocity and temperature profiles during the heating duration. With regard to
the comparison 1-g versus �-g conditions, one may notice a striking difference
on the VZ profiles near the cold disk. We can observe that under 1-g condition,
there exists a narrow region where VZ becomes positive, indicating obviously
that fluid is directed towards the hot disk (i.e. in the opposite direction with
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respect to the thermocapillary flow). Such behaviour, which has not been
observed under �-g condition, may be explained later by scrutinizing the
structure of the flow field (Figures 6 and 7). For instance from Figure 5, it is
clearly observed that, for a given Marangoni number, the fluid temperature
appears to be much higher under �-g condition than in normal gravity
condition. Such behaviour results from the fact that under 1-g condition,
natural convection effects exist and they, with respect to the geometrical
configuration studied here, oppose the thermocapillary effects. This
combination results in a reduction of the thermocapillary flow, and hence, one
may expect that the heat transfer in the fluid zone is improved under �-g
condition. It is also observed that in the vicinity of the cold disk, the axial
temperature gradient is greatly reduced in zones operating under 1-g condition.

The above interesting hydrodynamic and thermal behaviours related to the
free surface may be better understood by scrutinizing Figures 6, 7 and 8 which
show, respectively, the time-evolution of the flow structure and isotherms as
obtained for the same cases considered earlier. We can observe that, in general,
the circulation of the fluid is more intense along the free surface and, also, the
center of the thermocapillary recirculation zone is located near that free surface.
These characteristics are well known to any thermocapillary flow such as the
one under study here. For relatively low and moderate Marangoni number

Figure 4.
Time-evolution of the
axial velocity profile on
the free surface for
NaNO3 float zone (Ma =
5,000 and 10,000, A =
0.732).
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under 1-g and �-g, say Ma � 5,000, the usual unicellular flow structure has
been found with the recirculation zone located beside the heated disk. Such
behaviour has also been observed for high Marangoni number, say Ma =
10,000, under �-g condition only (Figure 7). For the case Ma = 10,000 under 1-g,
however, the bicellular flow structure may be expected, due to the fact that the
thermocapillary flow becomes stronger near the cold disk. Since the radial
temperature gradient within the fluid is more important under high Marangoni
number, the natural convection effects on the return flow become,
consequently, more important. That explains the presence of a stronger
recirculation of the fluid near the cold disk. For cases operating under 1-g, it is
rather interesting to notice the presence of a tiny recirculation zone located in
the vicinity of the cold disk (Figues 6 and 7). Such recirculation zone which
causes positive axial velocity on the free surface (Figure 4), is believed to be due
essentially to the curved shape of the free surface. No such behaviour has been
observed for cases under �-g condition where the free surface remains nearly
cylindrical. In fact, for the �-g cases considered, numerical results have shown
that the maximum deformation of the free surface corresponding to 10±4g does
not exceed 0.08 per cent of the zone nominal radius. Hence, the assumption of a
perfectly cylindrical free surface as often considered by many researchers in
studying zones operating in �-g conditions (see for example, Rupp et al., 1989)
appears to be quite acceptable.

Figure 5.
Time-evolution of the

temperature profile on
the free surface for

NaNO3 float zone (Ma =
5,000 and 10,000, A =

0.732).
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With regard to the transient behaviour of the flow and thermal fields, it is
observed that, although they exhibit only a minor changes in their structures
with time, the maximum value of the stream function, 	max ± which indicates the
intensity of the thermocapillary flow ± increases steadily with time during the
heating process. One may notice, for a given case, the existence of a maximum
value of 	max observed shortly after the temperature of the heated disk has
reached its constant value. Afterwards 	max decreases slightly to reach a certain
asymptotic value which corresponds to a fixed (i.e. constant) temperature

Figure 6.
Time-evolution of the
flow field in NaNO3 float
zone Ma = 5,000, A =
0.732 under 1-g (a-d) and
�-g (e-h) conditions
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difference between the disks. This behaviour, also observed by Nguyen et al.
(1995a) under �-g condition, may be attributed to the stabilization of the
thermocapillary flow itself, which can be explained as follows. At the end of the
heating process and shortly after the heated disk temperature reaches its
constant value (corresponding to the end of each of the steps), the
thermocapillary flow has gained a considerably strong intensity. Unless we
continue to impose an increasing �T between the disks, this strong

Figure 7.
Time-evolution of the

flow field in NaNO3 float
zone Ma = 10,000, A =

0.732 under 1-g (a-d) and
�-g (e-h) conditions
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thermocapillary flow will tend to uniformize the temperature field. As a
consequence, the temperature gradient on the free surface will decrease slightly
and so, in turn, does the intensity of the thermocapillary flow. Another point of
particular interest resides in the fact that the shape of the free surface remains
essentially the same during the heating process and it is almost identical to the
one corresponding to the static condition. Such a result appears to be quite
realistic since for low capillary number fluid such as the one studied here, it is
well known that the shape of the free surface is mainly governed by gravity and
surface tension effect. In fact for the sake of generality as well as for future study
on the oscillatory flow, we have conserved the term `̀ Ca Reth P'' in Equation 11c,
but its omission will not produce any significant effect on the shape of the free
surface. It is very interesting to note that the assumption of a low capillary
number fluid ± i.e. neglecting the term `̀Ca Reth P'' ± has also been considered by
many researchers (see for example Kozhoukharova and Slavchev, 1986).

Regarding the transient behaviour of the thermal field, for Ma = 5,000 in
particular (Figure 8), we can observe that at the beginning of the heating
process, hot fluid is mainly confined near the heated disk. With further increase
in time, the hot front invades progressively the fluid zone. We notice an
appreciable increase of the temperature gradient with time, in particular near
the hot disk. One may also observe the distorted isotherms along the free
surface. The distortion results from the thermocapillary effects. Such distortion
is clearly more pronounced under �-g condition indicating a stronger intensity
of the thermocapillary flow, as discussed previously.

Finally, it is observed that the intensity of the thermocapillary flow also
increases considerably with the increase of the Marangoni number. Such
obvious behaviour may be explained by the fact that with an increase of Ma
(and hence, an increase of �T between the disks), the driving temperature
gradient will increase and consequently, the resulting thermocapillary flow will
become more important. Table I shows such influence of the Marangoni
number Ma on the values of 	max as well as on the fluid circulation VZ (at Z =
0.6) corresponding to the asymptotic thermal boundary conditions for both the
�-g and 1-g environments (note that all the values of 	max in Table I have been
converted using the same base corresponding to Ma = 10,000). As discussed
previously, the thermocapillary flow is improved under �-g condition. This
behaviour is clearly observed from Table I.

b) Time-evolution of the hydrodynamic and thermal fields for Silicon float zones
We were particularly interested to study the transient behaviours of a Si (Pr =
0.016) float zone because this material is widely used in semiconductors
fabrication. Most of our numerical simulations were carried out for �-g
condition. A parametric study has been performed in order to investigate the
effects of both the Marangoni number Ma and aspect ratio A. Figure 2b shows
the time-evolution of the disk no. 1 temperature as imposed for the simulations
performed on Si. Note that the slope dt1/d� was fixed to 1�C/minute and the
continuous heating process is started from the rest state with uniform
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Table I.
Effects of Ma on 	max

and the fluid
circulation on the free

surface for NaNO3 float
zone

Ma 2,500 5,000 7,500 10,000

VZ (mm/s) Z = 0.6 (1-g) 2.04 2.71 3.35 3.85
VZ (mm/s) Z = 0.6 (�-g) 3.06 4.25 5.41 6.8
	max (1-g) 3.858�10±4 5.68�10±4 7.823�10±4 1.02�10±3

	max (�-g) 4.203�10±4 6.26�10±4 8.280�10±4 1.04�10±3

Figure 8.
Time-evolution of the
isotherms structure in

NaNO3 float zone Ma =
5,000, A = 0.732 under 1-

g (a-d) and �-g (e-h)
conditions



HFF
10,3

324

temperature equal to the melting temperature tM of Silicon. Figure 9 shows in
particular the transient evolution of the fluid temperature and the axial velocity
on the free surface as obtained for the case Ma = 64, Reth = 4,000 and A = 0.7.
We can notice immediately a striking difference regarding the behaviours of a
Si zone while comparing to that of a NaNO3 zone. It is observed, at first, that the
temperature profiles are almost linear along the free surface indicating clearly
the dominant effect of the conduction, as we know that Si has a high thermal
conductivity. Also, the temperature gradient is generally important near the
disks and increases with time. Such increase has been found to be remarkable
near the cold disk, which explains the movement of the point of the maximum
axial velocity towards that end. Near the hot disk, however, one can notice the
diminution of the temperature gradient between � = 60 S and � = 90 S, which
causes consequently a decrease in the fluid circulation velocity. Such behaviour
may be attributed to the stabilization of the thermal field, as discussed
previously. For the case shown, the stabilization time (i.e. the elapsed time
between the start-time of the heating and the moment where the flow is
declared fully-developed) may be estimated to be � 90 seconds during which,
the maximum value of VZ has increased almost by the factor of three. We also

Figure 9.
Time-evolution of the
temperature and axial
velocity profiles on the
free surface for a Silicon
float zone under �-g
condition (Ma = 64, A =
0.7)
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observe that, in opposition to a NaNO3 float zone (Figure 4), the
thermocapillary flow is pronounced all along the free surface with a single
point of the maximum VZ observed, for the case considered, near the cold disk.
Figure 10 shows, respectively, the structure of streamlines and isotherms as
obtained for the case under consideration at different times during the heating
process. One may clearly noticed the nearly cylindrical free surface since, as
noted previously, the radial deformation of that free surface is negligible under
�-g condition. It is very interesting to observe, at first, that the shape of the

Figure 10.
Time-evolution of the

flow field and isotherms
in a Silicon float zone

under �-g condition (Ma
= 64, A = 0.7)
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streamlines remains almost the same with time. The flow structure consists of
an usual unicellular pattern with strong circulation of fluid along its free
surface. The value of 	max is respectively, 1.61 � 10±3, 3.03 � 10±3, 4.11 � 10±3

and 4.11� 10±3 for � = 20, 40, 60 and 240 S. Hence, the structure obtained at � =
60 S may be regarded as the one corresponding to the asymptotic state of the
flow. With regard to the thermal field, one can see that its structure consists
generally of parallel straight lines. Only at the end of the heating process where
	max becomes considerable, slightly curved isotherms can be clearly noticed.
Such behaviour may be explained by the fact that Si is a relatively high thermal
conductivity and low viscosity material for which, the thermal structure would
be governed almost entirely by the imposed boundary conditions and it is not
significantly affected by the flow field. The above hydrodynamic and thermal
behaviours have also been found for other values of Ma and A tested in this
study (Bazzi, 1999).

Similar behaviours regarding the influence of the Marangoni number have
been found for a Si float zone. For example, the value of 	max corresponding to
a `̀ pseudo-steady-state'' has increased from 4.11 � 10±3 to 6.47 � 10±3 to 8.18 �
10±3 and to 9.55� 10±3 for Ma augmenting from 64 to 128 to 192, and to 256. On
the other hand, the corresponding values of VZmax on the free surface are,
respectively, 0.0877, 0.1455, 0.1929 and 0.2366.

With respect to the influence of the aspect ratio A, it has been observed that
	max also increases considerably with an augmentation of A. Thus, for the case
Ma = 123, 	max is respectively 0.0038, 0.0052, 0.0065 and 0.0098 for A = 0.5, 0.6,
0.7 and 1.0. However, VZmax does not vary significantly with A. In fact, it
decreases slightly with an increase of A. The corresponding values of VZmax

are 0.1472, 0.1469, 0.1455 and 0.1424. Such behaviours may be explained by the
fact that increasing the aspect ratio A (defined as R0 / H) is equivalent, within
the context of this study where H has been chosen as the reference length, to an
increase of R0 or of the volume of the fluid itself under the free surface. Hence,
one can expect that the thermocapillary flow would be improved. The above
apparent contradictory behaviour regarding the decrease of VZmax with A is
believed to be due to the slight movement of the center of the recirculation zone
away from the free surface.

Table II resumes finally the effects of both the parameters Ma and A on the
asymptotic values of 	max and the fluid circulation VZmax under �-g condition.

Table II.
Effects of parameters
Ma and A on 	max

and VZmax for silicon
float zone

A = 0.7
Ma 64 128 192 256
	max 4.11�10±3 6.47�10±3 8.18�10±3 9.55�10±3)

VZmax(mm/s) 45.30 74.31 98.53 120.84

Ma = 128
A 0.5 0.6 0.7 1
	max 3.88�10)±3 5.20�10±3 6.47�10±3 9.83�10±3

VZmax(mm/s) 75.18 75.02 74.31 72.73
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Note that the values of 	max and VZmax in Table II have been all converted
using the same base corresponding to the case Ma = 64, since the reference
velocity is function of the temperature difference between the disks.

Conclusion
In this work, a successfully validated numerical model which takes into
account the deformability of the free surface has been proposed to study the
transient behaviour of NaNO3 and Silicon float zones operating under �-g and
1-g environments. From the numerical results obtained, the following
conclusions seem to be pertinent:

. in general, the temperature and velocity gradients are more pronounced
near the disks and a stronger fluid circulation is observed along the free
surface;

. these gradients as well as the intensity of the thermocapillary flow
increase steadily with time during the heating process to reach a certain
maximum state and decrease slightly afterwards to an asymptotic state
as the temperature difference between the disks becomes constant;

. the intensity of the asymptotic thermocapillary flow increases
considerably with the increase of the Marangoni number. This intensity
also increases with an augmentation of the aspect ratio;

. the thermocapillary flow and the heat transfer have been found to be
improved under �-g condition;

. for the cases studied, the dynamical shape of the free surface has been
found to be nearly identical to the one corresponding to the static
condition;

. for NaNO3 float zones with low to moderate Marangoni numbers under
1-g condition as well as for all the cases operating in �-g environment,
the unicellular flow structure has been found with the recirculation
center located near the heated disk. On the other hand, the bicellular flow
structure may be observed for a case with high Marangoni number
under 1-g condition;

. for a Silicon float zone under �-g condition, only a unicellular flow
structure has been observed with the center of the recirculation zone
located near the cold disk.
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Appendix. Boundary conditions on the free surface
The coordinate system (r0, z0), which is locally attached to the deformed free surface of the zone, is
chosen as follows: (see Figure A1)
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(r0, 0) is normal to the free surface, and (0, z0) is tangential to the free surface
The unit vector!tt is written as:

t
!

t � ÿ sin � r! � cos � z!���������������������������������
cos2 � � sin2 �

p � ÿ tg� r! � z!��������������������
1 � tg2�

p �
@f
@z

� �
r! � z!����������������������

1 � @f
@z

� �2
r �A:1�

where � is the angle between (r, z) and r0, z0). We have then the following unit vectors along the
tangential and normal directions:

t
!

t �
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@z

� �
�������������������������
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1�������������������������
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and

n! � 1�������������������������
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s ;
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@z
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�������������������������
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Table AI resumes the relationships between (r0, z0) and (r, z):

a) Equilibrium of the normal-stress at the free surface
The balance of the normal-stress at the free surface may be expressed as follows based on the
well-known Laplace's equation, see for example Finn (1986) and Lai (1984):

ÿ � p ÿ p1 � 2�"r0r0 � ÿ� 1

R1
� 1

R2

� �
�A:4�

Figure A1.
Relationship between (r,
z) and (r0, z0) coordinate
systems

Table AI.
The relationships
between (r0, \0) and r,z)

r z

r0 11 = cos r0r n1 = cos r0z
z0 12 = cos z0r n2 = cos z0z
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ÿ�pÿ p1�2��ÿ�12
1 "rr � n2

1 "zz � 2n1 11 "zr� � ÿ � 1

R1
� 1

R2

� �
�A:5�

where p1 is the ambient pressure; "ij are viscous stresses; R1 and R2 are the radii of curvature
given as follows:

1
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After substitution, the equation (A.5) becomes:
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b) Equilibrium of tangential shear-stress at the free surface
We have:

2�"r0z0 � @�
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which can be developed as:
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c) The kinematic condition
The following additional condition, which is often referred as the kinematic condition, and
expressing that no mass flux is across the free surface, is written as:
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� v! : n!� � 0 �A:12�
or as:
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The above condition must also be fully satisfied during the course of numerical solution
procedure.

d) The thermal boundary condition at the free surface
We assume that the free surface is adiabatic i.e. the heat loss to the surrounding environment is
considered negligible. This condition is expressed as follows:
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or as:
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e) The boundary conditions under dimensionless form
The above boundary conditions at the free surface, the equations A.8, A.11, A.13 and A.15, are
rewritten respectively as follows under the dimensionless form:
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and

@T

@R
ÿ @F

@Z

@T

@Z
� 0 �A:19�

From the above equations, some further simplifications may be introduced, for example in the
case where Ca « 1 and (@F / @Z)2 « 1, as adopted and discussed in the section `̀ Boundary and
initial conditions'' of the paper.

f) On the determination of the position of the zone free surface
Under the simplifications Ca « 1 and (@F / @Z)2 « 1, the equation of the normal-stress balance
(A.16) becomes:

Ca Reth P BsZ � 1

F
ÿ @2F

@Z2
�A:20�

Furthermore, for the static case corresponding to the non-heated zone i.e. Reth = Ma = 0, the
above equation becomes as follows:
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